
MY-BASIC Quick Reference

1. Introduction

MY-BASIC is a tiny cross-platform easy extendable BASIC interpreter
written in pure C with about 5000 lines of source code. Its grammar is
similar to structured BASIC in early era, but without line number. It is
aimed to be either an embeddable scripting language or a standalone
interpreter. The core is pretty light; all in a C source file and an
associated header file. You can combine MY-BASIC with an existing C
/ C++ / Objective-C project easily, that can make them more powerful.
This manual is a quick reference on how to program with MY-BASIC,
what it can do and what cannot, how to use it and extend it as a
scripting programming language.
For the latest info, see http://code.google.com/p/my-basic; or
contact with author from mailto:hellotony521@gmail.com.

2. Programming with BASIC

The well known programming language BASIC is an acronym for
Beginner's All-purpose Symbolic Instruction Code; when we mention
BASIC today, we often refer to the BASIC family, not a specific one.
The BASIC family has a long history since an original BASIC was
designed in 1964 by John George Kemeny and Thomas Eugene Kurtz

at Dartmouth College in New Hampshire; and BASIC is famous
because it is easy to learn and use all the time.
MY-BASIC has an early structured BASIC like grammar, similar as
GW-BASIC but without line number. It would be familiar to you if you
ever had programmed with a BASIC dialect.
Getting started
You can download the latest MY-BASIC package from
http://code.google.com/p/my-basic/downloads/list or check out the
source from http://code.google.com/p/my-basic/source/checkout
first if you don’t have a standalone interpreter yet. It is recommended
to check out the source code rather than downloading a package
because the ones in the download list are often a little out of date.
In this part let’s get started using the MY-BASIC command line
interpreter which comes as below:

The close square bracket is an input prompt. Let’s begin rock it by
typing a classical ‘hello world’ tutorial as below:

You would get the response text after giving it a RUN command and
hinting the enter key. Any text begins with a single quote and end to
that line wouldn’t be parsed to any interpretable structure but
treated as comment; a comment does not perform anything, it’s just
a short explanation of statements. Like other BASIC dialects,
MY-BASIC is not case-sensitive; it means PRINT A$ or Print a$ will
have the same response.
Keywords
There are twenty two keywords and twenty four function reserved
words in MY-BASIC as below:

Keywords MOD, AND, OR, NOT, LET, DIM, IF, THEN, ELSE, FOR,
TO, STEP, NEXT, WHILE, WEND, DO, UNTIL, EXIT,
GOTO, GOSUB, RETURN, END

Reserved
words

ABS, SGN, SQR, FLOOR, ROUND, RND, SIN, COS,
TAN, ASIN, ACOS, ATAN, EXP, LOG, ASC, CHR, LEFT,
LEN, MID, RIGHT, STR, VAL, PRINT, INPUT

It is not allowed to use these words for user-defined identifier; in
addition there are two more TRUE and FALSE predefined ones
besides these words, which represent Boolean value true and false,
you are capable of redefining these two words but it’s not

‘ Hello world tutorial
a$ = “hello ”
a$ = a$ + “world”
PRINT a$

recommended. Meaning of each keyword will be mentioned latter in
this manual.
Operators
There are eleven operators in MY-BASIC as below:

Operators +, -, *, /, ^, =, <, >, <=, >=, <>
All these operators could act in calculation or comparison. Besides
these operators, keywords MOD, AND, OR, NOT can also perform
operator behaviors. An operator priority level shown in the table
below indicates execution order in an expression:

Level Operation
1 ^
2 *, /, MOD

3 +, - (minus)
4 <, >, <=, >=, <>, = (equal comparison)
5 NOT
6 AND, OR
7 - (negative)
8 = (assignment)

The priority of level 1 is the highest and level 8 is the lowest. Higher
level operations are treated before the lower ones. An expression is
processed from left to right; operations in a same level are dealt in
the same way. Brackets ‘(’ and ‘)’ are used in pair to process
expression between them before operations which are not
surrounded by them.

MOD means modulus, it is usually signified by percent symbol ‘%’ in
some other programming languages. The caret symbol stands for
power operation thus 2 ^ 3 results 8.
Data and operation
There are four kinds of built-in data type in MY-BASIC: Integer, Real,
Boolean, String.
Integer and Real are defined as int and float of C types which are
32bit size under most compiler architectures nowadays. And you
could redefine them as other types like long and double by modifying
a few lines of code if you need. Boolean’s only instances are TRUE and
FALSE, and can be assigned from a Boolean expression or an Integer.
Actually Boolean is implemented and treated the same as Integer;
zero means FALSE and none zero means TRUE.
MY-BASIC accepts numbers in HEX and OCT representation. A
hexadecimal number begins with a 0x prefix, and an octonary one
begins with a 0. For instance 0x10(HEX) equals to 020(OCT) equals to
16(DEC).
A variable identifier can contain alphabet and number, but must
begin with a letter. A variable does not require declaration before
using, so pay attention to spelling mistakes avoid strange errors. You
don’t need to take care of Integer / Float type conversion of a variable,
an Integer variable can become a Float automatically if it’s assigned
with a Float value. Notice that a String variable must end with a dollar
character $. An assignment statement consists of a beginning
keyword LET and a following assignment expression, but the word LET

is optional. See below:

MY-BASIC supports array up to four dimensions by default (defined by
a macro). Array is a kind of collection data structure common in
programming. An array can store a set of data which can be accessed
via the array name and subscripts. A MY-BASIC array can hold either
Real or String data. An array must be declared by a DIM (short for
dimension) statement before using like this:

The naming rule for array identifiers is similar to variable rule. A
dimension definition field followed an identifier begins with an open
bracket and ends with a close one. Dimensions are separated by
commas. Array indexes begin from zero in MY-BASIC thus nums(0) is
the first element of array num. An array index could be a positive
Integer, a variable of Integer or an expression; an invalid index would
lead to an out of bound error.
MY-BASIC allows you to concatenate two Strings together using
operator plus ‘+’ and get a concatenate String. So be aware of that
each String concatenate operation would generate a new String
object. Numeric comparison operators can also apply to String. These
operators start comparing the first character of each String, if they

DIM nums(10)
DIM strs$(2, 5)

LET a = 1 ‘ Assignment statement begins with LET
pi = 3.14 ‘ Another assignment statement

are equal to each other, it continues with the following pairs until the
characters differ or until a terminating null-character is reached; then
return Integer values indicating the relationship between the Strings:
a zero value if both Strings are equal, a positive one if the first is
greater than the second one, a negative one if the first is less than the
second one.
Sub program
It is recommended to break a program into small sub programs. Sub
programs can bring duplicate coding and complicacy shielding. A label
is used to define the enter point of a sub program. You can use a
GOSUB statement wherever in the program to call a defined sub
program and transfer control to it. A RETURN statement is used to
exit a sub program and transfer control back to its caller.
Control structures
There are three types of control structures in common structured
programming languages, and MY-BASIC is of no exception.
Serial structure that executes statements one by one is the most basic
but also fundamental structure. MY-BASIC supports GOTO statement
that provides unconditional control transfer ability. You can execute it
like GOSUB as GOTO label, but that control cannot be returned back.
An END statement can be placed anywhere in source code to
terminate the whole execution.
Conditional structure consists of some condition statements (like IF,
THEN, ELSE). These statements check a condition then perform an
action in the case of true condition and in the case of false they

perform something else as specified by you. You can write multi
statements in a single line by separating them with colons.
Loop structure statements check a loop condition and do the loop
body in the case of true loop condition until it comes to the false
case.
The FOR TO STEP NEXT loop statement is deemed as fixed step loop.
See below that prints number one to ten:

The STEP segment is optional if the increment is one. The loop
variable after NEXT is optional if it’s continuing the closest FOR
segment.
We don’t know how many steps a loop has, sometimes. For this
reason, unfixed step loops are necessary. There are two kinds of
unfixed loops in MY-BASIC, WHILE WEND and DO UNTIL loop. See the
code below:

a = 1
WHILE a <= 10

PRINT a
WEND

FOR i = 1 TO 10 STEP 1
PRINT i

NEXT i

Just as their names imply, WHILE WEND loop do the loop body while
the condition is true, and DO UNTIL loop do that until the condition is
false. The difference is WHILE WEND checks the condition first before
executing other codes, however, DO UNTIL checks the condition after
the loop body has been executed once.
EXIT statement in MY-BASIC is used to interrupt current loop and
continue to execute the program after it. It is the same as break
statement in some other programming languages.

3. Core and Standard Libraries

MY-BASIC supplies a set of frequently used function libraries which
provides some fundamental numeric and string functions. These
function name words couldn’t be used as a user-defined variable
identifier either. For details of these functions, see the figure bellow:

Type Name Description

Numeric ABS Returns absolute value of a number
SGN Returns sign of a number
SQR Returns arithmetic square root of a

b = 1
DO

PRINT b
UNTIL a > 10

number
FLOOR Returns the greatest integer not greater

than a number
CEIL Returns the least integer not less than a

number
FIX Returns the integer trimmed format of a

number
ROUND Returns the specified value to the nearest

integer of a number

RND Returns a random float between 0.0 and
1.0

SIN Returns the sine of a number
COS Returns the cosine of a number
TAN Returns the tangent of a number
ASIN Returns the arcsine of a number
ACOS Returns the arccosine of a number

ATAN Returns the arctangent of a number
EXP Returns the base-e exponential of a

number
LOG Returns the base-e logarithm of a number

String ASC Returns the integer ASCII code of a
character

CHR Returns the character of an integer ASCII
code

LEFT Returns a given number of characters
from the left of a string

LEN Returns the length of a string
MID Returns a given number of characters

from a given position of a string
RIGHT Returns a given number of characters

from the right of a string
STR Returns the string format of a number

VAL Returns the number format of a string
Input &
Output

PRINT Outputs number or string to the standard
output stream

INPUT Inputs number or string from the standard
input stream

Be aware that all those functions besides PRINT and INPUT require a
pair of brackets to envelop arguments.

4. Application Programming Interface

There are a few but adequate exposed MY-BASIC APIs (Application
Programming Interface) for C / C++ / Objective-C programs. MY-BASIC
is written with pure C, what you need to do before programming with
MY-BASIC is just copy and add my_basic.h and my_basic.c to the
target project; all interfaces are declared in my_basic.h. Most APIs
which return an int value return MB_FUNC_OK if there is no

execution error.
Interpreter structure
MY-BASIC uses an interpreter structure to store some necessary data
structures during parsing and running period; like local / global
function directory, global variable dictionary, abstract syntax tree,
parsing / running context, error information etc. An interpreter
structure is a unit of MY-BASIC environment. Invoking between
MY-BASIC script and host program also works through this structure.
Initializing and disposing
int mb_init(void);
This function must and must only be called once before any other
operations with MY-BASIC to initialize the entire system.
int mb_dispose(void);
This function must and must only be called once after operations with
MY-BASIC to dispose the entire system.
int mb_open(mb_interpreter_t** s);
This function opens an interpreter structure to get ready for parsing
and running.
Common usage of this function likes this:

int mb_close(mb_interpreter_t** s);
This function closes an interpreter structure when it is no longer used.
mb_open and mb_close must be matched in pair.

mb_interpreter_t* bas = 0;
mb_open(&bas);

int mb_reset(mb_interpreter_t** s, bool_t clrf);
This function resets an interpreter structure to defaults as it was just
opened.
Function registration
These functions are called to register or remove extended functions.
int mb_register_func(mb_interpreter_t* s,

const char* n,
mb_func_t f);

This function registers a function pointer into an interpreter structure
using a given name. The function to be registered must be a pointer
as int (* mb_func_t)(struct mb_interpreter_t*, void**). A registered
function can be called in script.
int mb_remove_func(mb_interpreter_t* s,

const char* n);
This function removes a registered function out of an interpreter
structure by a given name.
Invoking
These functions are called in extended functions to invoke with script.
int mb_attempt_func_begin(mb_interpreter_t* s,

void** l);
This function checks whether script is invoking an extended function
in a legal begin format.
int mb_attempt_func_end(mb_interpreter_t* s,

void** l);
This function checks whether script is invoking an extended function

in a legal end format.
int mb_attempt_open_bracket(mb_interpreter_t* s,

void** l);
This function checks whether script is invoking an extended function
in a legal format that begins with an open bracket before arguments
list.
int mb_attempt_close_bracket(mb_interpreter_t* s,

void** l);
This function checks whether script is invoking an extended function
in a legal format that ends with a close bracket after arguments list.
int mb_pop_int(mb_interpreter_t* s,

void** l,
int_t* val);

This function tries to pop an argument in int_t from an interpreter
structure.
int mb_pop_real(mb_interpreter_t* s,

void** l,
real_t* val);

This function tries to pop an argument in real_t from an interpreter
structure.
int mb_pop_string(mb_interpreter_t* s,

void** l,
char** val);

This function tries to pop an argument in char* from an interpreter
structure.

int mb_pop_value(mb_interpreter_t* s,
void** l,
mb_value_t* val);

This function tries to pop an argument in mb_value_t from an
interpreter structure. Use this function instead of mb_pop_int,
mb_pop_real and mb_pop_string if an extended function accepts
argument of generics types.
int mb_push_int(mb_interpreter_t* s,

void** l,
int_t val);

This function tries to push an argument in int_t format to an
interpreter structure.
int mb_push_real(mb_interpreter_t* s,

void** l,
real_t val);

This function tries to push an argument in real_t format to an
interpreter structure.
int mb_push_string(mb_interpreter_t* s,

void** l,
char* val);

This function tries to push an argument in char* format to an
interpreter structure.
int mb_push_value(mb_interpreter_t* s,

void** l,
mb_value_t val);

This function tries to push an argument in mb_value_t format to an
interpreter structure. Use this function instead of mb_push_int,
mb_push_real and mb_push_string if an extended function returns
value of generics types.
Parsing and running
int mb_load_string(mb_interpreter_t* s,

const char* l);
This function loads a string into an interpreter structure; then parses
script source to executable structures and appends them to the
abstract syntax tree.
int mb_load_file(mb_interpreter_t* s,

const char* f);
This function loads a string into an interpreter structure; then parses
script source to executable structures and appends them to the
abstract syntax tree.
int mb_run(mb_interpreter_t* s);
This function runs a parsed abstract syntax tree.
int mb_suspend(mb_interpreter_t* s,

void** l);
This function suspends and saves current execution point. Some
extended functions need this ability and resume that point after
some other operations. Call mb_run to resume a suspended point.
Error handling
mb_error_e mb_get_last_error(mb_interpreter_t* s);
This function returns the latest error information of an interpreter

structure.
const char* mb_get_error_desc(mb_error_e err);
This function returns the description string of error information.
int mb_set_error_handler(mb_interpreter_t* s,

mb_error_handler_t h);
This function sets the error callback handler of an interpreter
structure.
int mb_set_printer(mb_interpreter_t* s,

mb_print_func_t p);
This function sets the PRINT handler of an interpreter structure. Use
this to customize an output handler for the PRINT statement. The
function to be set must be a pointer as int (* mb_print_func_t)(const
char*, …). printf is set by default.

5. Scripting with MY-BASIC

As to source code portability, the C programming language is most
outstanding, because C compilers are available on almost every
platform; that is why MY-BASIC is written in pure clean C so it can be
compiled for PC, Mac, Cell phone, Game console etc. with none or a
few modifications. It would be pretty easy to bind MY-BASIC in the
existing project by just adding the MY-BASIC core which consists of a
C source file and a header file into the target project.
First of all, you should recognize which parts in your project require
speed and low level control, and which require flexibility and

augmentability. It’s not wise to code kernel computation-intensive
modules in script; script is appropriate for volatile parts of an entire
program. Scripting programming languages are not omnipotent.
If it is explicit to you that using a scripting language would bring the
benefit to your project then you should make and expose some
interfaces correctly. More details on how to create your own scripting
interfaces will be dealt with in the next chapter. After that you may
complete your program with script invoking those scripting interfaces
and pack them together into a publishable version.

6. Customizing MY-BASIC

MY-BASIC is a free and open source software released under the MIT
license which allows you to use, modify and extend the software for
either commercial or noncommercial cases. You might need more
scripting libraries according to your specific requirement though
MY-BASIC has already provided some functions.
The first step is to define the function in your host program. All C /
C++ / Objective-C functions that will be called from MY-BASIC script
will be called using a pointer of type int (* mb_func_t)(struct
mb_interpreter_t*, void**). Since an interpreter structure is used as
the first argument of an extended function, the function actually can
pop any number of arguments from the interpreter structure and
push none or one return value back into the structure. The int return
value indicates an execution status of an extended function which

always returns MB_FUNC_OK for no error. Let’s make a maximum
function that returns the maximum value of two integers as tutorial;
see code below:

The second step is to register defined functions as: mb_reg_fun(bas,
maximum) (supposing we have mb_interpreter_t* bas defined).

int maximum(mb_interpreter_t* s, void** l) {
int result = MB_FUNC_OK;
int m = 0;
int n = 0;
int r = 0;

assert(s && l);

mb_check(mb_attempt_open_bracket(s, l));
mb_check(mb_pop_int(s, l, &m));
mb_check(mb_pop_int(s, l, &n));
mb_check(mb_attempt_close_bracket(s, l));

r = m > n ? m : n;
mb_check(mb_push_int(s, l, r));

return result;
}

After that you can use a registered function as any other scripting
interfaces like:

To perform a user defined abort, just return an integer value greater
equal than a macro MB_EXTENDED_ABORT. It is recommended to
add an abort value like:

Then code return MB_ABORT_FOO; in your customized function.

7. Using MY-BASIC as a Standalone Interpreter

You would be familiar with then MY-BASIC interpreter since you
typed the hello world tutorial. There are some useful commands
under interpreter mode:

Command Summary Usage

HELP Shows help information.
CLS Clears screen.

typedef enum mb_user_abort_e {
MB_ABORT_FOO = MB_EXTENDED_ABORT + 1,
/* more… */

};

i = MAXIMUM(1, 2)
PRINT i

NEW Clears current program.
RUN Runs current program.
BYE Quits interpreter.
LIST Lists current program. LIST [l [n]], l is start line

number, n is line count.
EDIT Edits a line in current

program.
EDIT n, n is line number.

LOAD Loads a file as current
program.

LOAD *.*.

SAVE Saves current program to
a file.

SAVE *.*.

KILL Deletes a file. KILL *.*.

Type a command (maybe also with several arguments) and hint enter
to execute it. Command is only an aspect of the interpreter other
than keyword, that is to say it is valid to use them as variable
identifiers in a program; but to avoid reading confusion and conflict,
you must consider it carefully.

8. Extra Information

Document version
Version: 1.0 Dec. 2012
Author: Tony Wong
First edited date: Mar. 8, 2011
Last edited date: Dec. 10, 2012

